Differentiation of Parametric Functions

Parametric differentiation helps analyze curves where x and y are functions of a third variable. Learn its key concepts with examples.

Neetesh Kumar

Neetesh Kumar | February 08, 2025                                      \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon


Table of Content:


Definition of Derivatives of Parametric Functions:

Parametric Equations:
In parametric form, the equations of a curve are given by two functions:

  • x=f(t)x = f(t)
  • y=g(t)y = g(t)

where tt is a parameter. The derivative of yy with respect to xx, denoted dydx\dfrac{dy}{dx}, is found using the following formula:

dydx=dydtdxdt\boxed{\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}}}

This formula allows us to differentiate parametric equations by first differentiating yy and xx with respect to tt, and then dividing dydt\dfrac{dy}{dt} by dxdt\dfrac{dx}{dt}.


Formula Used for Parametric Derivatives:

  • For parametric equations, the derivative dydx\dfrac{dy}{dx} is given by: dydx=g(t)f(t)\dfrac{dy}{dx} = \dfrac{g'(t)}{f'(t)} where:
  • g(t)=y(t)g(t) = y(t)
  • f(t)=x(t)f(t) = x(t)
  • g(t)=dydtg'(t) = \dfrac{dy}{dt}
  • f(t)=dxdtf'(t) = \dfrac{dx}{dt}

This is the general approach used to find the derivative of parametric functions.


Derivative Examples with Solutions:

Example 1: Finding the Slope of a Circle

Find the derivative of the parametric equations for a circle: x=3costx = 3 \cos t, y=3sinty = 3 \sin t

Solution:

Here, x=f(t)=3costx = f(t) = 3 \cos t and y=g(t)=3sinty = g(t) = 3 \sin t.

To find dydx\dfrac{dy}{dx}, we differentiate both x(t)x(t) and y(t)y(t) with respect to tt:

dxdt=3sint\dfrac{dx}{dt} = -3 \sin t

dydt=3cost\dfrac{dy}{dt} = 3 \cos t

Now, apply the formula:

dydx=dydtdxdt=3cost3sint=cott\dfrac{dy}{dx} = \dfrac{\frac{dy}{dt}}{\frac{dx}{dt}} = \dfrac{3 \cos t}{-3 \sin t} = -\cot t

Thus, the slope of the tangent at any point on the circle is: cott\boxed{-\cot t} .


Example 2: Differentiating a Cycloid

Find the derivative of the parametric equations of a cycloid: x=r(tsint)x = r(t - \sin t), y=r(1cost)y = r(1 - \cos t)

Solution:

Here, x=f(t)=r(tsint)x = f(t) = r(t - \sin t) and y=g(t)=r(1cost)y = g(t) = r(1 - \cos t).

Differentiating both functions with respect to tt:

dxdt=r(1cost)\dfrac{dx}{dt} = r(1 - \cos t)

dydt=rsint\dfrac{dy}{dt} = r \sin t

Now, apply the chain rule:

dydx=dydtdxdt=rsintr(1cost)\dfrac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \dfrac{r \sin t}{r(1 - \cos t)}

Simplifying:

dydx=sint1cost\dfrac{dy}{dx} = \dfrac{\sin t}{1 - \cos t}

Thus, the derivative of the cycloid is: sint1cost\boxed{\frac{\sin t}{1 - \cos t}}


Example 3: Velocity of a Parametric Function

The position of a particle is given by the parametric equations: x=4t3+2tx = 4t^3 + 2t, y=3t2ty = 3t^2 - t

Find the velocity of the particle at time t=1t = 1.

Solution:

Here, x=f(t)=4t3+2tx = f(t) = 4t^3 + 2t and y=g(t)=3t2ty = g(t) = 3t^2 - t.

To find the velocity, we first find the derivatives:

dxdt=12t2+2\dfrac{dx}{dt} = 12t^2 + 2

dydt=6t1\dfrac{dy}{dt} = 6t - 1

The velocity vector v(t)\mathbf{v}(t) is given by:

v(t)=(dxdt,dydt)\mathbf{v}(t) = \left( \dfrac{dx}{dt}, \dfrac{dy}{dt} \right)

At t=1t = 1, substitute into the derivatives:

dxdt=12(1)2+2=14\dfrac{dx}{dt} = 12(1)^2 + 2 = 14

dydt=6(1)1=5\dfrac{dy}{dt} = 6(1) - 1 = 5

Thus, the velocity vector at t=1t = 1 is:

v(1)=(14,5)\mathbf{v}(1) = (14, 5)

The magnitude of the velocity is:

v(1)=142+52=196+25=221|\mathbf{v}(1)| = \sqrt{14^2 + 5^2} = \sqrt{196 + 25} = \sqrt{221}

Thus, the magnitude of the velocity at t=1t = 1 is: 221\boxed{\sqrt{221}}


Example 4: Parametric Equation of a Spirograph

Find the derivative of the parametric equations for a spirograph:
x=(3+2cost)cos2tx = (3 + 2 \cos t) \cos 2t, y=(3+2cost)sin2ty = (3 + 2 \cos t) \sin 2t

Solution:

Here, x=f(t)=(3+2cost)cos2tx = f(t) = (3 + 2 \cos t) \cos 2t and y=g(t)=(3+2cost)sin2ty = g(t) = (3 + 2 \cos t) \sin 2t.

We differentiate both functions:

dxdt=2sintcos2t(3+2cost)(2sin2t)\dfrac{dx}{dt} = -2 \sin t \cos 2t - (3 + 2 \cos t)(2 \sin 2t)

dydt=2sintsin2t+(3+2cost)(2cos2t)\dfrac{dy}{dt} = -2 \sin t \sin 2t + (3 + 2 \cos t)(2 \cos 2t)

Now, applying the chain rule:

dydx=dydtdxdt\dfrac{dy}{dx} = \dfrac{\frac{dy}{dt}}{\frac{dx}{dt}}

This is a complex spirograph function, and solving it involves simplifying these expressions further for specific values of tt.

Thus, the derivative can be found as:

dydx=2sintsin2t+(3+2cost)(2cos2t)2sintcos2t(3+2cost)(2sin2t)\boxed{\frac{dy}{dx} = \frac{-2 \sin t \sin 2t + (3 + 2 \cos t)(2 \cos 2t)}{-2 \sin t \cos 2t - (3 + 2 \cos t)(2 \sin 2t)}}


Conclusion:

  • The derivative of parametric functions allows us to differentiate curves defined by parametric equations.
  • It is widely used in physics, such as for motion equations and curves describing paths in 3D and 2D spaces.
  • Understanding parametric derivatives is essential for engineering, astronomy, and mechanical design.