Differentiation of Polar Functions

Polar differentiation helps analyze curves defined in polar coordinates. Learn how to find dy/dx for polar functions effectively.

Neetesh Kumar

Neetesh Kumar | February 08, 2025                                      \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon


Table of Content:


Definition of Derivatives of Polar Functions:

Derivatives of Polar Functions:
In polar coordinates, the position of a point is represented by (r,θ)(r, \theta), where rr is the radial distance from the origin and θ\theta is the angle. The derivative of a polar function involves calculating the rate of change of rr with respect to θ\theta.

The formula for the derivative of a polar function is:

dydx=dydθdxdθ=r(θ).sin(θ)+r(θ).cos(θ)r(θ).cos(θ)r(θ).sin(θ)\boxed{\frac{dy}{dx} = \dfrac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{r'(\theta). \sin(\theta) + r(\theta). \cos(\theta)}{r'(\theta) .\cos(\theta) - r(\theta). \sin(\theta)}}

Where:

  • r(θ)r(\theta) is the polar function,
  • r(θ)r'(\theta) is the derivative of r(θ)r(\theta) with respect to θ\theta,
  • dydx\dfrac{dy}{dx} is the Cartesian derivative.

This formula allows us to convert the polar derivative into a Cartesian slope by applying trigonometric identities.


Formula and Explanation:

  • The derivative of polar functions is a powerful concept for converting between polar and Cartesian coordinates.
  • The formula above helps in differentiating complex polar equations by providing a clear path from polar to Cartesian derivatives.
  • This rule is used in areas like physics (e.g., motion in polar coordinates), engineering, and astronomy where objects move in circular paths or rotational motion.

Derivative Examples with Solutions:

Example 1: Derivative of a Polar Curve

Differentiate the polar equation r(θ)=2+3sin(θ)r(\theta) = 2 + 3 \sin(\theta).

Solution:

Using the formula for the derivative of polar functions:

r(θ)=ddθ(2+3sin(θ))=3cos(θ)r'(\theta) = \dfrac{d}{d\theta} \big(2 + 3 \sin(\theta)\big) = 3 \cos(\theta)

Now apply the formula for dydx\dfrac{dy}{dx}:

dydx=r(θ).sin(θ)+r(θ).cos(θ)r(θ).cos(θ)r(θ).sin(θ)\dfrac{dy}{dx} = \dfrac{r'(\theta). \sin(\theta) + r(\theta). \cos(\theta)}{r'(\theta). \cos(\theta) - r(\theta). \sin(\theta)}

Substitute r(θ)=2+3sin(θ)r(\theta) = 2 + 3 \sin(\theta) and r(θ)=3cos(θ)r'(\theta) = 3 \cos(\theta):

dydx=(3cos(θ))sin(θ)+(2+3sin(θ))cos(θ)(3cos(θ))cos(θ)(2+3sin(θ))sin(θ)\dfrac{dy}{dx} = \dfrac{(3 \cos(\theta)) \sin(\theta) + (2 + 3 \sin(\theta)) \cos(\theta)}{(3 \cos(\theta)) \cos(\theta) - (2 + 3 \sin(\theta)) \sin(\theta)}

Simplifying:

dydx=3sin(θ)cos(θ)+2cos(θ)+3sin(θ)cos(θ)3cos2(θ)2sin(θ)3sin(θ)cos(θ)\dfrac{dy}{dx} = \dfrac{3 \sin(\theta) \cos(\theta) + 2 \cos(\theta) + 3 \sin(\theta) \cos(\theta)}{3 \cos^2(\theta) - 2 \sin(\theta) - 3 \sin(\theta) \cos(\theta)}

Thus, the final answer is:

6sin(θ)cos(θ)+2cos(θ)3cos2(θ)2sin(θ)3sin(θ)cos(θ)\boxed{\frac{6 \sin(\theta) \cos(\theta) + 2 \cos(\theta)}{3 \cos^2(\theta) - 2 \sin(\theta) - 3 \sin(\theta) \cos(\theta)}}


Example 2: Derivative of a Polar Spiral

Differentiate the polar function r(θ)=θ2r(\theta) = \theta^2.

Solution:

First, compute the derivative of r(θ)r(\theta):

r(θ)=2θr'(\theta) = 2\theta

Now apply the formula for dydx\frac{dy}{dx}:

dydx=r(θ)sin(θ)+r(θ)cos(θ)r(θ)cos(θ)r(θ)sin(θ)\dfrac{dy}{dx} = \dfrac{r'(\theta) \sin(\theta) + r(\theta) \cos(\theta)}{r'(\theta) \cos(\theta) - r(\theta) \sin(\theta)}

Substitute r(θ)=θ2r(\theta) = \theta^2 and r(θ)=2θr'(\theta) = 2\theta:

dydx=(2θ)sin(θ)+θ2cos(θ)(2θ)cos(θ)θ2sin(θ)\dfrac{dy}{dx} = \dfrac{(2\theta) \sin(\theta) + \theta^2 \cos(\theta)}{(2\theta) \cos(\theta) - \theta^2 \sin(\theta)}

Thus, the final answer is:

2θsin(θ)+θ2cos(θ)2θcos(θ)θ2sin(θ)\boxed{\frac{2\theta \sin(\theta) + \theta^2 \cos(\theta)}{2\theta \cos(\theta) - \theta^2 \sin(\theta)}}


Example 3: Finding the Tangent Line

Find the equation of the tangent line to the polar curve r(θ)=1+cos(θ)r(\theta) = 1 + \cos(\theta) at θ=π3\theta = \dfrac{\pi}{3}.

Solution:

First, compute r(θ)r'(\theta):

r(θ)=ddθ(1+cos(θ))=sin(θ)r'(\theta) = \dfrac{d}{d\theta} \big(1 + \cos(\theta)\big) = -\sin(\theta)

Now apply the formula for dydx\dfrac{dy}{dx}:

dydx=r(θ)sin(θ)+r(θ)cos(θ)r(θ)cos(θ)r(θ)sin(θ)\dfrac{dy}{dx} = \dfrac{r'(\theta) \sin(\theta) + r(\theta) \cos(\theta)}{r'(\theta) \cos(\theta) - r(\theta) \sin(\theta)}

Substitute r(θ)=1+cos(θ)r(\theta) = 1 + \cos(\theta) and r(θ)=sin(θ)r'(\theta) = -\sin(\theta):

dydx=(sin(θ).sin(θ)+(1+cos(θ)).cos(θ))(sin(θ).cos(θ)(1+cos(θ)).sin(θ))\dfrac{dy}{dx} = \dfrac{\big(-\sin(\theta). \sin(\theta) + (1 + \cos(\theta)). \cos(\theta)\big)}{\big(-\sin(\theta). \cos(\theta) - (1 + \cos(\theta)). \sin(\theta)\big)}

At θ=π3\theta = \dfrac{\pi}{3}, we have:

r(π3)=1+cos(π3)=1+12=32r\left(\frac{\pi}{3}\right) = 1 + \cos\left(\dfrac{\pi}{3}\right) = 1 + \dfrac{1}{2} = \dfrac{3}{2}

r(π3)=sin(π3)=32r'\left(\dfrac{\pi}{3}\right) = -\sin\left(\dfrac{\pi}{3}\right) = -\dfrac{\sqrt{3}}{2}

Substitute these values into the derivative formula:

dydx=3232+321232123232=34+3434334\dfrac{dy}{dx} = \dfrac{-\frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} + \frac{3}{2} \cdot \frac{1}{2}}{-\frac{\sqrt{3}}{2} \cdot \frac{1}{2} - \frac{3}{2} \cdot \frac{\sqrt{3}}{2}} = \dfrac{-\frac{3}{4} + \frac{3}{4}}{-\frac{\sqrt{3}}{4} - \frac{3\sqrt{3}}{4}}

Simplify:

dydx=0\dfrac{dy}{dx} = \boxed{0}

So the final derivative and tangent equation can be used.


Example 4: Derivative of a Circle

Differentiate the equation of a circle r(θ)=2cos(θ)r(\theta) = 2 \cos(\theta).

Solution:

First, compute r(θ)r'(\theta):

r(θ)=2sin(θ)r'(\theta) = -2 \sin(\theta)

Now apply the formula for dydx\dfrac{dy}{dx}:

dydx=r(θ).sin(θ)+r(θ).cos(θ)r(θ).cos(θ)r(θ).sin(θ)\dfrac{dy}{dx} = \dfrac{r'(\theta). \sin(\theta) + r(\theta). \cos(\theta)}{r'(\theta). \cos(\theta) - r(\theta). \sin(\theta)}

Substitute r(θ)=2cos(θ)r(\theta) = 2 \cos(\theta) and r(θ)=2sin(θ)r'(\theta) = -2 \sin(\theta):

dydx=(2sin(θ).sin(θ)+2cos(θ).cos(θ))(2sin(θ).cos(θ)2cos(θ).sin(θ))\dfrac{dy}{dx} = \dfrac{\big(-2 \sin(\theta). \sin(\theta) + 2 \cos(\theta). \cos(\theta)\big)}{\big(-2 \sin(\theta). \cos(\theta) - 2 \cos(\theta). \sin(\theta)\big)}

Simplify:

dydx=2sin2(θ)+2cos2(θ)4sin(θ)cos(θ)\dfrac{dy}{dx} = \boxed{\frac{-2 \sin^2(\theta) + 2 \cos^2(\theta)}{-4 \sin(\theta) \cos(\theta)}}

This is the derivative of the polar equation of the circle.


Conclusion:

  • The derivatives of polar functions help in calculating the slope of curves in polar coordinates.
  • These are widely used in physics, especially in orbital mechanics, astronomy, and engineering.
  • This rule enables the transformation of polar equations into Cartesian derivatives for further analysis.