Differentiation of Implicit Functions

Implicit differentiation is useful for functions where y is not isolated. This technique helps in solving complex equations.

Neetesh Kumar

Neetesh Kumar | February 08, 2025                                      \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon


Table of Content:


Definition of Derivative of Implicit Functions:

Derivative of Implicit Functions:
An implicit function is a function where the dependent variable and the independent variable are mixed together. To differentiate an implicit function, we use implicit differentiation.

For an equation involving xx and yy, if we have:

F(x,y)=0F(x, y) = 0,

then the derivative of yy with respect to xx, denoted as dydx\dfrac{dy}{dx}, is given by:

dydx=ddxF(x,y)ddxF(y,x)\boxed{\frac{dy}{dx} = -\frac{\frac{d}{dx} F(x, y)}{\frac{d}{dx} F'(y, x)}}

This means we differentiate both sides of the equation with respect to xx, applying the chain rule to terms involving yy as a function of xx.


Formula and Steps:

  1. Start with the equation: Begin with an equation where yy is defined implicitly in terms of xx.

  2. Differentiate both sides: Differentiate both sides of the equation with respect to xx. For terms involving yy, apply the chain rule.

  3. Solve for dydx\dfrac{dy}{dx}: After differentiating, isolate dydx\dfrac{dy}{dx} to solve for the derivative of yy with respect to xx.


Derivative Examples with Solutions:

Example 1: Differentiating an Implicit Function

Given x2+y2=25x^2 + y^2 = 25, find dydx\dfrac{dy}{dx}.

Solution:

Differentiate both sides with respect to xx:

ddx(x2)+ddx(y2)=ddx(25)\dfrac{d}{dx} (x^2) + \dfrac{d}{dx} (y^2) = \dfrac{d}{dx} (25)

2x+2ydydx=02x + 2y \cdot \dfrac{dy}{dx} = 0

Now, solve for dydx\frac{dy}{dx}:

2ydydx=2x2y \cdot \dfrac{dy}{dx} = -2x

dydx=2x2y\dfrac{dy}{dx} = \dfrac{-2x}{2y}

Simplifying: dydx=xy\boxed{\dfrac{dy}{dx} = \dfrac{-x}{y}}


Example 2: Differentiating a More Complex Implicit Function

Given x3+y3=6xyx^3 + y^3 = 6xy, find dydx\dfrac{dy}{dx}.

Solution:

Differentiate both sides with respect to xx:

ddx(x3)+ddx(y3)=ddx(6xy)\dfrac{d}{dx} (x^3) + \dfrac{d}{dx} (y^3) = \dfrac{d}{dx} (6xy)

Applying the chain rule:

3x2+3y2dydx=6(xddx(y)+y)3x^2 + 3y^2 \cdot \dfrac{dy}{dx} = 6 \left( x \dfrac{d}{dx}(y) + y \right)

Now, solving for dydx\frac{dy}{dx}:

3x2+3y2dydx=6xdydx+6y3x^2 + 3y^2 \cdot \dfrac{dy}{dx} = 6x \cdot \dfrac{dy}{dx} + 6y

Rearranging:

3y2dydx6xdydx=6y3x23y^2 \cdot \dfrac{dy}{dx} - 6x \cdot \dfrac{dy}{dx} = 6y - 3x^2

Factoring:

dydx(3y26x)=6y3x2\dfrac{dy}{dx} (3y^2 - 6x) = 6y - 3x^2

Solving for dydx\dfrac{dy}{dx}:

dydx=6y3x23y26x\dfrac{dy}{dx} = \dfrac{6y - 3x^2}{3y^2 - 6x}

Thus, the final answer is: dydx=6y3x23y26x\boxed{\dfrac{dy}{dx} = \dfrac{6y - 3x^2}{3y^2 - 6x}}.


Example 3: Differentiating a Trigonometric Implicit Function

Given sin(xy)=x+y\sin(xy) = x + y, find dydx\dfrac{dy}{dx}.

Solution:

Differentiate both sides with respect to xx:

ddx(sin(xy))=ddx(x+y)\dfrac{d}{dx} (\sin(xy)) = \dfrac{d}{dx} (x + y)

Using the chain rule on the left side:

cos(xy)(y+xdydx)=1+dydx\cos(xy) \cdot \left( y + x \cdot \dfrac{dy}{dx} \right) = 1 + \dfrac{dy}{dx}

Now, isolate dydx\dfrac{dy}{dx}:

cos(xy)y+xcos(xy)dydx=1+dydx\cos(xy) \cdot y + x \cos(xy) \cdot \dfrac{dy}{dx} = 1 + \dfrac{dy}{dx}

Rearranging:

xcos(xy)dydxdydx=1cos(xy)yx \cos(xy) \cdot \dfrac{dy}{dx} - \dfrac{dy}{dx} = 1 - \cos(xy) \cdot y

Factoring out dydx\frac{dy}{dx}:

dydx(xcos(xy)1)=1cos(xy)y\dfrac{dy}{dx} \cdot (x \cos(xy) - 1) = 1 - \cos(xy) \cdot y

Solving for dydx\dfrac{dy}{dx}:

dydx=1cos(xy)yxcos(xy)1\dfrac{dy}{dx} = \dfrac{1 - \cos(xy) \cdot y}{x \cos(xy) - 1}

Thus, the final answer is: dydx=1cos(xy)yxcos(xy)1\boxed{\dfrac{dy}{dx} = \dfrac{1 - \cos(xy) \cdot y}{x \cos(xy) - 1}}.


Example 4: Implicit Differentiation in a Real-World Context

The relationship between the height hh and radius rr of a cone is given by h2+r2=100h^2 + r^2 = 100. Find dhdr\dfrac{dh}{dr}.

Solution:

Differentiate both sides with respect to rr:

ddr(h2)+ddr(r2)=ddr(100)\dfrac{d}{dr} (h^2) + \dfrac{d}{dr} (r^2) = \dfrac{d}{dr} (100)

Using implicit differentiation:

2hdhdr+2r=02h \cdot \dfrac{dh}{dr} + 2r = 0

Now, solving for dhdr\dfrac{dh}{dr}:

2hdhdr=2r2h \cdot \dfrac{dh}{dr} = -2r

dhdr=rh\dfrac{dh}{dr} = \dfrac{-r}{h}

Thus, the final answer is: dhdr=rh\boxed{\dfrac{dh}{dr} = \dfrac{-r}{h}}.


Conclusion:

  • The derivative of implicit functions is essential for dealing with equations where yy is not explicitly isolated.
  • It is widely used in fields like geometry, physics, and economics, where relationships between variables are not always explicitly defined.
  • Implicit differentiation allows us to compute rates of change in systems where both variables depend on each other.