Table of Derivative Rules & Formulas

This table provides essential derivative rules, including power, product, quotient, chain, and trigonometric differentiation formulas for quick reference.

Neetesh Kumar

Neetesh Kumar | February 06, 2025                                      \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon


Table of Content:

Derivative Formulas:

f(x)f(x)f(x)f'(x)
ConstantConstant00
xnx^nnxn1n \cdot x^{n-1}
exe^xexe^x
axa^xax.lnaa^x .\ln a
lnx\ln x1x\dfrac{1}{x}
logax\log_a x1x.lna\dfrac{1}{x. \ln a}
abs(x)abs(x)xabs(x) (for x0)\dfrac{x}{abs(x)} \text{ (for } x \neq 0 \text{)}
x\sqrt{x}12.x\dfrac{1}{2.\sqrt{x}}
xn\sqrt[n]{x}1n.x(1n1)\dfrac{1}{n}. x^{(\frac{1}{n} - 1)}
sin(x)\sin (x)cos(x)\cos (x)
cos(x)\cos (x)sin(x)-\sin (x)
tan(x)\tan (x)sec2(x)\sec^2 (x)
cot(x)\cot (x)csc2(x)-\csc^2 (x)
sec(x)\sec (x)sec(x).tan(x)\sec (x) .\tan (x)
csc(x)\csc (x)csc(x).cot(x)-\csc (x) .\cot (x)
sin1x\sin^{-1} x11x2\dfrac{1}{\sqrt{1-x^2}}
cos1x\cos^{-1} x11x2-\dfrac{1}{\sqrt{1-x^2}}
tan1x\tan^{-1} x11+x2\dfrac{1}{1+x^2}
cot1x\cot^{-1} x11+x2-\dfrac{1}{1+x^2}
sec1x\sec^{-1} x1abs(x).x21\dfrac{1}{abs(x). \sqrt{x^2 - 1}}
csc1x\csc^{-1} x1abs(x).x21-\dfrac{1}{abs(x). \sqrt{x^2 - 1}}
sinh(x)\sinh (x)cosh(x)\cosh (x)
cosh(x)\cosh (x)sinh(x)\sinh (x)
tanh(x)\tanh (x)sech2(x)\text{sech}^2 (x)
coth(x)\coth (x)csch2(x)-\text{csch}^2 (x)
sech(x)\text{sech} (x)sech(x).tanh(x)-\text{sech} (x). \tanh (x)
csch(x)\text{csch} (x)csch(x).coth(x)-\text{csch} (x). \coth (x)
sinh1(x)\sinh^{-1} (x)1x2+1\dfrac{1}{\sqrt{x^2 + 1}}
cosh1(x)\cosh^{-1} (x)1x21\dfrac{1}{\sqrt{x^2 - 1}}
tanh1(x)\tanh^{-1} (x)11x2\dfrac{1}{1 - x^2}
coth1(x)\coth^{-1} (x)11x2\dfrac{1}{1 - x^2}
sech1(x)\text{sech}^{-1} (x)1x.1x2-\dfrac{1}{x. \sqrt{1 - x^2}}
csch1(x)\text{csch}^{-1} (x)1abs(x).1+x2-\dfrac{1}{abs(x). \sqrt{1 + x^2}}


Derivative Rules:

Rule Name\mathrm{Rule} \space \mathrm{Name}Formula Used\mathrm{Formula} \space \mathrm{Used}
Constant Rule\mathrm{Constant \space Rule}d(c)dx=0\dfrac{d(c)}{dx} = 0
Sum Rule\mathrm{Sum \space Rule} ddx[f(x)+g(x)]=f(x)+g(x)\dfrac{d}{dx}\bigg[f(x) + g(x)\bigg] = f'(x) + g'(x)
Difference Rule\mathrm{Difference \space Rule}ddx[f(x)g(x)]=f(x)g(x)\dfrac{d}{dx}\bigg[f(x) - g(x)\bigg] = f'(x) - g'(x)
Power Rule\mathrm{Power \space Rule}ddx[xn]=n.xn1\dfrac{d}{dx}\bigg[x^n\bigg] = n.x^{n-1}
Product Rule\mathrm{Product \space Rule}ddx[f(x).g(x)]=f(x).g(x)+f(x).g(x)\dfrac{d}{dx}\bigg[f(x).g(x)\bigg] = f'(x).g(x) + f(x).g'(x)
Quotient Rule\mathrm{Quotient \space Rule}ddx[f(x)g(x)]=f(x).g(x)f(x).g(x)[g(x)]2\dfrac{d}{dx}\bigg[\dfrac{f(x)}{g(x)}\bigg] = \dfrac{f'(x).g(x) - f(x).g'(x)}{\big[g(x)\big]^2}
Reciprocal Rule\mathrm{Reciprocal \space Rule}ddx[1f(x)]=f(x)[f(x)]2\dfrac{d}{dx}\left[\dfrac{1}{f(x)}\right] = -\dfrac{f'(x)}{\big[f(x)\big]^2}
Inverse Function Rule\mathrm{Inverse \space Function \space Rule}ddx[f1(x)]=1f(f1(x))\dfrac{d}{dx}\bigg[f^{-1}(x)\bigg] = \dfrac{1}{f'\big(f^{-1}(x)\big)}
Composite Function Rule\mathrm{Composite \space Function \space Rule}ddx[f(g(x))]=f(g(x))g(x)\dfrac{d}{dx}\bigg[f\bigg(g(x)\bigg)\bigg] = f'\bigg(g(x)\bigg) \cdot g'(x)