Differentiation of Inverse Functions

The derivative of an inverse function helps find rates of change when direct differentiation is complex. Learn its applications in calculus.

Neetesh Kumar

Neetesh Kumar | February 08, 2025                                      \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon


Table of Content:


Definition of Derivative of Inverse Functions:

Derivative of Inverse Functions:
Let f(x)f(x) be a function with an inverse f1(x)f^{-1}(x). The derivative of the inverse function f1(x)f^{-1}(x) is given by:

ddx(f1(x))=1f(f1(x))\boxed{\dfrac{d}{dx} \bigg(f^{-1}(x)\bigg) = \frac{1}{f'\bigg(f^{-1}(x)\bigg)}}

This formula tells us that the derivative of an inverse function is the reciprocal of the derivative of the original function evaluated at the point f1(x)f^{-1}(x).


Formula and Concept:

  • The derivative of the inverse function is crucial for understanding how changes in one variable influence another when functions are reversed.
  • Geometrically, the slope of the tangent line to the inverse function is the reciprocal of the slope of the tangent line to the original function.
  • Applications of this concept include solving equations involving logarithms, trigonometry, and complex exponentials where inverse functions frequently appear.

Derivative Examples with Solutions:

Example 1: Differentiating the Inverse of a Polynomial Function

Find the derivative of the inverse function of f(x)=2x33xf(x) = 2x^3 - 3x.

Solution:

First, differentiate f(x)f(x):

f(x)=6x23f'(x) = 6x^2 - 3.

The inverse function is f1(x)f^{-1}(x). According to the formula:

ddx(f1(x))=1f(f1(x))\dfrac{d}{dx} \bigg(f^{-1}(x)\bigg) = \dfrac{1}{f'(f^{-1}(x))}.

Now, let y=f1(x)y = f^{-1}(x), then:

x=2y33yx = 2y^3 - 3y

We need f(y)f'(y), so substitute y=f1(x)y = f^{-1}(x) into the derivative of f(x)f(x):

f(f1(x))=6(f1(x))23f'\bigg(f^{-1}(x)\bigg) = 6(f^{-1}(x))^2 - 3.

Thus, the derivative of the inverse function is:

ddx(f1(x))=16(f1(x))23\boxed{\dfrac{d}{dx} \bigg(f^{-1}(x)\bigg) = \frac{1}{6(f^{-1}(x))^2 - 3}}.


Example 2: Inverse of the Exponential Function

Find the derivative of the inverse function of f(x)=e2xf(x) = e^{2x}.

Solution:

First, differentiate f(x)f(x):

f(x)=2e2xf'(x) = 2e^{2x}.

The inverse function is f1(x)=12lnxf^{-1}(x) = \dfrac{1}{2} \ln x, so applying the derivative formula:

ddx(f1(x))=1f(f1(x))\dfrac{d}{dx} \bigg(f^{-1}(x)\bigg) = \dfrac{1}{f'(f^{-1}(x))}

Substitute f1(x)=12lnxf^{-1}(x) = \frac{1}{2} \ln x into f(x)f'(x):

f(f1(x))=2e212lnx=2xf'(f^{-1}(x)) = 2e^{2 \cdot \frac{1}{2} \ln x} = 2x.

Thus, the derivative of the inverse function is: ddx(f1(x))=12x\boxed{\dfrac{d}{dx} \bigg(f^{-1}(x)\bigg) = \frac{1}{2x}}.


Example 3: Differentiating the Inverse of a Logarithmic Function

Find the derivative of the inverse function of f(x)=ln(x2+1)f(x) = \ln(x^2 + 1).

Solution:

First, differentiate f(x)f(x):

f(x)=2xx2+1f'(x) = \dfrac{2x}{x^2 + 1}.

The inverse function is f1(x)f^{-1}(x), and applying the chain rule for inverse functions:

ddx(f1(x))=1f(f1(x))\dfrac{d}{dx} \bigg(f^{-1}(x)\bigg) = \dfrac{1}{f'(f^{-1}(x))}

Substitute into the derivative of f(x)f(x):

f(f1(x))=2f1(x)(f1(x))2+1f'(f^{-1}(x)) = \dfrac{2f^{-1}(x)}{(f^{-1}(x))^2 + 1}.

Thus, the derivative of the inverse function is:

ddx(f1(x))=(f1(x))2+12f1(x)\boxed{\dfrac{d}{dx} \bigg(f^{-1}(x)\bigg) = \frac{(f^{-1}(x))^2 + 1}{2f^{-1}(x)}}.


Example 4: Inverse of the Sine Function

Find the derivative of the inverse sine function f(x)=sin1(x)f(x) = \sin^{-1}(x).

Solution:

The derivative of the inverse sine function is known to be:

ddx(sin1(x))=11x2\dfrac{d}{dx} \bigg(\sin^{-1}(x)\bigg) = \dfrac{1}{\sqrt{1 - x^2}}.

Thus, the derivative of the inverse sine function is:

ddx(sin1(x))=11x2\boxed{\dfrac{d}{dx} \bigg(\sin^{-1}(x)\bigg) = \dfrac{1}{\sqrt{1 - x^2}}}.


Conclusion:

  • The derivative of inverse functions is a powerful concept for differentiating functions that are inverses of one another.
  • It has applications in trigonometry, logarithms, and exponentials, which are important in mathematics, physics, and engineering.