Differentiation of Functions Expressed in Determinant Form

Functions in determinant form require special differentiation techniques. Learn how to apply derivative rules to determinant expressions.

Neetesh Kumar

Neetesh Kumar | February 08, 2025                                      \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space \space Share this Page on: Reddit icon Discord icon Email icon WhatsApp icon Telegram icon


Table of Content:


Definition of Derivative of Functions Expressed in Determinant Form:

Derivative of Functions Expressed in Determinant Form:

  1. Let f(x)f(x) = fghuvwlmn\begin{vmatrix} f & g & h \\ u & v & w \\ l & m & n \end{vmatrix} where all functions are differentiable then

F(x)=fghuvwlmn+fghuvwlmn+fghuvwlmnF'(x) = \begin{vmatrix} f' & g' & h' \\ u & v & w \\ l & m & n \end{vmatrix} + \begin{vmatrix} f & g & h \\ u' & v' & w' \\ l & m & n \end{vmatrix} + \begin{vmatrix} f & g & h \\ u & v & w \\ l' & m' & n' \end{vmatrix}

This result may be proved by the first principle and the same operation can also be done column wise.

  1. When a function is expressed as a determinant, the derivative of such a function requires the application of specific properties of determinants and matrices.

If f(x)=det(A(x))f(x) = \det(A(x)), where A(x)A(x) is a matrix whose elements are functions of xx, then the derivative of the determinant with respect to xx is given by:

ddx[det(A(x))]=det(A(x))tr(A1(x)A(x))\boxed{\frac{d}{dx} \left[ \det(A(x)) \right] = \det(A(x)) \cdot \text{tr}\left(A^{-1}(x) \cdot A'(x)\right)}

Where:

  • A(x)A(x) is the matrix.
  • A(x)A'(x) is the matrix obtained by differentiating each element of A(x)A(x) with respect to xx.
  • A1(x)A^{-1}(x) is the inverse of the matrix A(x)A(x).
  • tr(A)\text{tr}(A) is the trace of matrix AA, which is the sum of its diagonal elements.

Formula for Determinant Derivative:

  • The determinant derivative involves calculating the derivative of the matrix elements.
  • The formula involves:
    1. Determinant of the matrix.
    2. Trace of the matrix product of the inverse of A(x)A(x) and its derivative.

This is widely used in linear algebra, optimization problems, and economics for dealing with systems of equations and matrix transformations.


Derivative Examples with Solutions:

Example 1: Derivative of a 2x2 Matrix Function

Let A(x)=(2x345x)A(x) = \begin{pmatrix} 2x & 3 \\ 4 & 5x \end{pmatrix}. Find ddx[det(A(x))]\frac{d}{dx} \left[ \det(A(x)) \right].

Solution:

We first compute the determinant of A(x)A(x):

det(A(x))=(2x)(5x)(4)(3)=10x212\det(A(x)) = (2x)(5x) - (4)(3) = 10x^2 - 12.

Now, differentiate det(A(x))\det(A(x)):

ddx[det(A(x))]=ddx(10x212)=20x\frac{d}{dx} \left[ \det(A(x)) \right] = \frac{d}{dx} (10x^2 - 12) = 20x.

Thus, the final answer is: 20x\boxed{20x}.


Example 2: Derivative of a 3x3 Matrix Function

Let A(x)=(x22x31x401x)A(x) = \begin{pmatrix} x^2 & 2x & 3 \\ 1 & x & 4 \\ 0 & 1 & x \end{pmatrix}. Find ddx[det(A(x))]\frac{d}{dx} \left[ \det(A(x)) \right].

Solution:

First, compute the determinant of A(x)A(x):

det(A(x))=x2x41x2x140x+31x01\det(A(x)) = x^2 \begin{vmatrix} x & 4 \\ 1 & x \end{vmatrix} - 2x \begin{vmatrix} 1 & 4 \\ 0 & x \end{vmatrix} + 3 \begin{vmatrix} 1 & x \\ 0 & 1 \end{vmatrix}.

Expanding the 2x2 determinants:

det(A(x))=x2(x24)2x(x)+3(1)\det(A(x)) = x^2 (x^2 - 4) - 2x (x) + 3 (1)

det(A(x))=x44x22x2+3\det(A(x)) = x^4 - 4x^2 - 2x^2 + 3

det(A(x))=x46x2+3\det(A(x)) = x^4 - 6x^2 + 3.

Now, differentiate det(A(x))\det(A(x)):

ddx[det(A(x))]=4x312x\frac{d}{dx} \left[ \det(A(x)) \right] = 4x^3 - 12x

Thus, the final answer is: 4x312x\boxed{4x^3 - 12x}.


Example 3: Derivative of a 2x2 Matrix Involving Exponential Function

Let A(x)=(exx23xln(x))A(x) = \begin{pmatrix} e^x & x^2 \\ 3x & \ln(x) \end{pmatrix}. Find ddx[det(A(x))]\dfrac{d}{dx} \left[ \det(A(x)) \right].

Solution:

First, compute the determinant of A(x)A(x):

det(A(x))=exln(x)3xx2\det(A(x)) = e^x \cdot \ln(x) - 3x \cdot x^2

det(A(x))=exln(x)3x3\det(A(x)) = e^x \ln(x) - 3x^3.

Now, differentiate det(A(x))\det(A(x)):

ddx[det(A(x))]=ddx(ex.ln(x))ddx(3x3)\dfrac{d}{dx} \left[ \det(A(x)) \right] = \dfrac{d}{dx} \big( e^x. \ln(x) \big) - \dfrac{d}{dx} (3x^3)

Using the product rule for exln(x)e^x \ln(x):

ddx(exln(x))=exln(x)+ex.1x\dfrac{d}{dx} \big( e^x \ln(x) \big) = e^x \ln(x) + e^x. \dfrac{1}{x}

Differentiating 3x33x^3:

ddx(3x3)=9x2\frac{d}{dx} (3x^3) = 9x^2

Thus, the derivative is:

ddx[det(A(x))]=exln(x)+exx9x2\frac{d}{dx} \left[ \det(A(x)) \right] = e^x \ln(x) + \frac{e^x}{x} - 9x^2

Thus, the final answer is:

exln(x)+exx9x2\boxed{e^x \ln(x) + \frac{e^x}{x} - 9x^2}.


Conclusion:

  • The derivative of functions expressed in determinant form is important for matrix calculus and is widely used in linear algebra, optimization, and economics.
  • The formula allows us to differentiate determinants involving matrix-valued functions, where the trace and inverse matrices play an essential role.
  • This concept is widely used in the analysis of systems of equations, econometric models, and multi-variable optimization.